DNA-binding specificity and in vivo targets of Caenorhabditis elegans nuclear factor I.

نویسندگان

  • Christina M Whittle
  • Elena Lazakovitch
  • Richard M Gronostajski
  • Jason D Lieb
چکیده

The conserved nuclear factor I (NFI) family of transcription factors is unique to animals and essential for mammalian development. The Caenorhabditis elegans genome encodes a single NFI family member, whereas vertebrate genomes encode 4 distinct NFI protein subtypes (A, B, C, and X). NFI-1-deficient worms exhibit abnormalities, including reduced lifespan, defects in movement and pharyngeal pumping, and delayed egg-laying. To explore the functional basis of these phenotypes, we sought to comprehensively identify NFI-1-bound loci in C. elegans. We first established NFI-1 DNA-binding specificity using an in vitro DNA-selection strategy. Analysis yielded a consensus motif of TTGGCA(N)(3)TGCCAA, which occurs 586 times in the genome, a 100-fold higher frequency than expected. We next asked which sites were occupied by NFI-1 in vivo by performing chromatin immunoprecipitation of NFI-1 followed by microarray hybridization. Only 55 genomic locations were identified, an unexpectedly small target set. In vivo NFI-1 binding sites tend to be upstream of genes involved in core cellular processes, such as chromatin remodeling, mRNA splicing, and translation. Remarkably, 59 out of 70 (84%) of the C. briggsae orthologs of the identified targets contain conserved NFI binding sites in their promoters. These experiments provide a foundation for understanding how NFI-1 is recruited to unexpectedly few in vivo sites to perform its developmental functions, despite a vast over-representation of its binding motif.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities

Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on represent...

متن کامل

Dynamics and recognition within a protein–DNA complex: a molecular dynamics study of the SKN-1/DNA interaction

Molecular dynamics simulations of the Caenorhabditis elegans transcription factor SKN-1 bound to its cognate DNA site show that the protein-DNA interface undergoes significant dynamics on the microsecond timescale. A detailed analysis of the simulation shows that movements of two key arginine side chains between the major groove and the backbone of DNA generate distinct conformational sub-state...

متن کامل

The Caenorhabditis elegans Rad17 homolog HPR-17 is required for telomere replication.

Subunits of the Rad9/Rad1/Hus1 (9-1-1) proliferating cell nuclear antigen (PNCA)-like sliding clamp are required for DNA damage responses and telomerase-mediated telomere replication in the nematode Caenorhabditis elegans. PCNA sliding clamps are loaded onto DNA by a replication factor C (RFC) clamp loader. The C. elegans Rad17 RFC clamp loader homolog, hpr-17, functions in the same pathway as ...

متن کامل

A Caenorhabditis elegans PUF protein family with distinct RNA binding specificity.

PUF proteins comprise a highly conserved family of sequence-specific RNA binding proteins that regulate target mRNAs via binding directly to their 3'UTRs. The Caenorhabditis elegans genome encodes several PUF proteins, which cluster into four groups based on sequence similarity; all share amino acids that interact with the RNA in the cocrystal of human Pumilio with RNA. Members of the FBF and t...

متن کامل

The Caenorhabditis elegans heterochronic regulator LIN-14 is a novel transcription factor that controls the developmental timing of transcription from the insulin/insulin-like growth factor gene ins-33 by direct DNA binding.

A temporal gradient of the novel nuclear protein LIN-14 specifies the timing and sequence of stage-specific developmental events in Caenorhabditis elegans. The profound effects of lin-14 mutations on worm development suggest that LIN-14 directly or indirectly regulates stage-specific gene expression. We show that LIN-14 can associate with chromatin in vivo and has in vitro DNA binding activity....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 29  شماره 

صفحات  -

تاریخ انتشار 2009